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We present studies for an individual based model of three interacting populations whose individuals are
mobile in a two-dimensional lattice. We focus on the pattern formation in the spatial distributions of the
populations. Also relevant is the relationship between pattern formation and features of the populations’ time
series. Our model displays both traveling wave solutions, clustering and uniform distributions, both related to
the parameter values. We also observed that the regeneration rate, the parameter associated to the primary level
of trophic chain, the plant, regulated the presence of predators, as well as the type of spatial configuration. This
result corroborates the theory that the enrichment of prey can stabilize the predator-prey dynamic in more
realistic models.
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I. INTRODUCTION

Mathematical modeling of population dynamics is widely
recognized as a useful tool in the investigation of many in-
teresting features found in the organization of individuals in
nature �1�. In order to study the spatial distribution of indi-
viduals in their habitats, it is essential to take into account
factors such as individual mobility and hunting and escaping
skills.

When populations are treated as continuous functions of
space and time, motion of individuals appears in these equa-
tions as diffusion terms. Diffusion is a very common natural
phenomenon in many areas of science �2�. Thus much can be
learned, by analogy, about the distribution of individuals in
their habitats from others diffusive phenomena. For instance,
if interacting populations are described by sets of reaction-
diffusion equations, it is possible to infer that individuals
may be distributed heterogeneously even in homogeneous
habitat. It is possible to observe phenomena like traveling
waves and chaos �3� even in simple models.

Predator-prey models can have their stability properties
changed by diffusive terms. It has been stated by Wilson and
De Roos �4� that spatial predator-prey systems are consider-
ably more stable than the aspatial ones. Originally, popula-
tion dynamics models were formulated in terms of differen-
tial equations �1�. This allowed the application of analytical
methods developed to treat problems in many other areas of
science and engineering in spatial ecology. With the advent
of cheap computing power, it became possible to build more
sophisticated models that are not easily translated into differ-
ential equations or that result in equations too difficult to be
solved.

Some strategies of analyzing and simulating these models
include individual based models �IBMs� using cellular au-

tomata �5�; IBMs without cellular automata �4�; and mean
field approximation �6�. Finite element methods and pertur-
bative methods �7� are also alternative approaches to study
these systems. In the present work we use individual based
models �IBMs� with cellular automata. This method applies
simple rules inspired on natural events of real systems on a
discrete group of individuals lying over a discrete finite lat-
tice. These rules are organized as a set of events and deter-
mine how individuals will behave in each time step. We in-
tend to investigate the global response of the system due to
little modifications on parameters of the model.

The main advantage of IBMs is the possibility of account-
ing for many additional features observed on real systems
attributing to each individuals particular information, like ge-
netics and age �8,9�, without increasing the computational
cost exponentially, as we have in approaches which take into
account time delayed effects and/or history-dependent mod-
els �10�. In general, there are not analytical solutions for
these kinds of models.

Our work focuses mainly on the spatial patterns that
emerge in an open three-trophic food chain and their rela-
tionships to the populations time series. Keitt et al. �11� dis-
cussed emergent patterns in diffusion-limited predator-prey
interaction introducing spatial heterogeneity in the model.
We observed emergent spatial patterns without the necessity
of this mechanism. Our model presents self-organization �12�
derived mainly from the dynamics of the system. Here we
propose an IBM consisting of a fixed plant population and a
prey population, which eats the plant population. The prey is
able to diffuse through the system. There is also a predator
population which feeds on prey in order to reproduce and
that is able to diffuse through the system as well.

This paper is organized as follows. In the next section we
present a description of the IBM for a three-trophic predator-
prey system that motivated this work. The simulation method
is presented and the details of the implementation of the
cellular automata rules are described. In Sec. III, we present
the results and a discussion about the main points of the
paper and in Sec. IV our conclusions and future perspectives
are discussed.
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II. MODEL

We consider a square lattice of linear size L with periodic
spatial boundary conditions. Each cell can be occupied by
plant, occupied by a prey, occupied by a predator, or occu-
pied by both. So there will be four states for a cell: plant
�xij =0�, prey �xij =1�, predator �xij =2�, or both �xij =3�. Time
works as a discrete variable �t=1,2 ,3 , . . .�. All the cells have
a real number that expresses the quantity of the plant re-
sources available on them. The sum of the values of all cells
represents the total number of the plant population. Each
mobile individual, prey or predator, has a intrinsic counter
called hunger which is incremented every time step. This
counter represents the total number of time steps that indi-
viduals do not eat. The adopted neighborhood is the Von
Neumamm type �13,14�, which includes four first neighbors.
The events will be applied to each individual on each time
step in the simulation according to stochastic rules.

Based on the simplest actions of individuals in nature, we
propose the following rules for the cellular automata.

�i� Movement. Predators and prey have different prob-
abilities to move to a neighboring site. At time step t, each
individual receives a random number to decide its next loca-
tion on the next time t+1. There are five possibilities and all
of them are related to the diffusive rates d1 and d2 associated
to prey and predator, respectively. They stay at the original
site; going up, down, left or right. Initially, there is a prob-
ability of leaving the original cell which is divided by the
four first neighbors. The complement of this probability is
the chance of being at the same cell. If two individuals mi-
grate to the same neighbor cell, only one remains on it due to
the carrying capacity, considered equal to one individual per
site. The individual with less hunger is chosen to occupy the
cell. If all of the neighborhood is already full, the individual
is forced to stay at it original point. As mentioned above, the
cell can be occupied by a prey, by a predator, or by both.

�ii� Natural death. Prey and predators can have different
probabilities to die. The mortality rates �1 and �2 are associ-
ated to prey and predator, respectively. At each time step it is
done a draw for each individual that will die with the corre-
sponding probability. Drawn individuals are removed from
the system on the next time step. Plants do not have natural
death draws, but there is a mechanism in their growth rule
that prevents them from growing exponentially.

�iii� Plant growth. Plants have a constant growth rate and
a carrying capacity associated with them. Each site has a
float counter that indicates the quantity of resources on each
time step and it generally changes after a prey visit. All sites
in the lattice have their plant counters increased by the fixed
constant value determined in the program, without any
draws, until the limit imposed by the carrying capacity that
has been reached. The plant growth in a current site do not
affect the neighbor cells.

�iv� Plant gathering. When one prey comes to a site, the
main rule is to gather the maximum quantity of food until its
hunger counter is reduced to zero. If its hunger is less than
the quantity of resources, it eats what it needs, setting its
counter to zero and leaving the remaining food quantity at
the site. If the opposite is verified, it eats all the site resources
setting the site’s counter to zero and keeps its hunger counter

set equal to the difference between the two quantities. The
plant gathering process does not have any draw.

�v� Predation. This event occurs when the prey and the
predator share the same cell. In these cases, a draw is done to
decide if the hunter is successful or not. In positive cases,
predators have the hunger counter set to zero and prey will
leave the system in the next time step. In negative cases,
nothing will change.

�vi� Reproduction. After all events described above have
been applied, the population is allowed to reproduce. Both
populations have different probabilities to reproduce and
only individuals whose hunger counter is zero will have a
chance to do it. Predators and prey can reproduce only one
offspring per time step and it will be placed in one of the
available neighbor sites. If all neighbor sites are already oc-
cupied the birth will be canceled.

The individuals of the initial populations are distributed
randomly around the lattice at the beginning of the simula-
tion and the events are applied in the order that they are
described previously. The upgrade of the population occurs
at the end of each iteration. Individuals which died on the
time t will be removed from the system, new individuals will
be placed on the region, and the position of the existing
individuals will be updated. Dying individuals from the
death draw at the time t are allowed to reproduce at this step
and then be removed from the system at the next one.

The results were obtained in square lattices of linear size
L=100, with periodic spatial boundary conditions. Each
simulation consisted of 106 time steps spending about 20 min
in machines with the following characteristics: 32-bits Ath-
lon MP processor with 512 MB using GNU C++ compiler
4.0.

III. RESULTS AND DISCUSSION

Continuous and deterministic models for predator-prey
system present coexistence of three populations, extinction
of predators or extinction of prey and predators as possible
steady states �15�.

We tested many cases with different sets of parameter
values in order to look for all these steady states. Our analy-
ses showed that variation of the parameter plant regeneration
rate is enough to sweep up all possible steady states. As prey
and predator populations rely on plant population, this pa-
rameter can control directly the presence of any population
on the system. The results presented below are organized
according to growing values of this parameter. For small
values of regeneration rate both populations go to extinction
and for higher values the system presents coexistence among
three populations. We intend to focus on states whose behav-
ior is close to the critical one. We mean by critical state a
steady point in the phase space which under a small change
on the parameter values can lead the system to a different
point, such as extinction of one population or distinct behav-
ior of the time series. We choose a set of parameters to
present in this paper, nevertheless, many other sets were
tested and similar results were found.

One important consequence of the discretization of the
individuals in the model is the increase of the possibility of
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extinction of the populations. In the continuous model, the
numerical solution of some special states shows that their
respective population diminishes, almost reaching zero, but
instead of going to extinction they present oscillatory behav-
ior �16�. In discrete individual simulation, this cannot be
verified because the populations are not capable of increas-
ing their number after they have gone to zero. Simulation
tests are very sensitive to stochasticity when the populations
are small.

To test the stability of the system, we run several cases,
using a specific set of parameters, under various initial val-
ues of the populations. Figure 1 shows the phase space of
these four simulations. We can observe that all simulations
predict the same steady point, independently of their initial
conditions. This result indicates that the system has a wide
basin of attraction. However, prey and predator populations
have higher probabilities to go to extinction when they start
from small values. Extinction cases frequently occur when
initial populations are close to the stochasticity fluctuations.

We observe two nontrivial steady states of this system
according to set of parameters that we choose. The first one
is the coexistence of plant and prey. The other is the coex-
istence of the three populations. It is possible to verify some
distinct population’s behaviors and to control the existence
of prey and predator populations on the region changing the
regeneration rate of the plant population and keeping other
parameter values constant.

A. Coexistence of two populations

Using the set of parameters C1, shown in Table I, and
regeneration rate below 0.015, both mobile populations go to
the extinction and the plant grow until their carrying capac-
ity. For regeneration rates between 0.015 and 0.03, prey are
capable of surviving and predators are still go to the extinc-
tion. This result indicates the existence of multiple steady
states to this system.

To verify the system behavior under the value variation of
the regeneration rate but maintaining fixed the other param-

eters, we run several cases and compare the results. Figure 2
shows the result of the simulation using the set C1 �see Table
I� and the regeneration rate equal to 0.02. We observe that
the time series in part a show an oscillatory behavior for the
plant and the prey, opposing the classical logistic function
property. The Fourier transform of the autocorrelation func-
tion in part c indicates the presence of one fundamental fre-
quency for the plant population and two harmonics of it. This
characterizes the existence of only one characteristic time for
the system. This behavior is the same for both populations,
showing that both of them oscillate in a synchronous way.
Simulations values of regeneration rate around 0.02 show the
same frequency of oscillation.

Comparing the time series and the corresponding spatial
distribution, we observe the emergence of population waves
migrating toward to the food gradient as we can see in Fig. 3.
These population waves are nonlinear and one consequence
of the nonlinearity is the annihilation of the individuals be-
hind the wave fronts. Wave collisions are very common due
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FIG. 1. Phase space portrait of plant and prey populations of
four simulations with parameter values given in Table I, set C1.
Values of initial populations are different in all simulations.

TABLE I. Sets of probabilities for the parameter values used in
the simulations.

Quantity C1 C2 C3 C4

Hunter 40 40 90 60

Prey reproduction 80 80 50 80

Predator reproduction 40 40 85 50

Prey death 1 1 5 5

Predator death 5 5 5 5

Prey mobility 80 40 80 80

Predator mobility 80 80 80 80

Carrying capacity 20 20 20 20
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FIG. 2. �Color online� Results of simulation using the set of
parameter C1 in Table I and regeneration rate equal to 0.02. The
predators go to the extinction at the beginning of the simulation. �a�
The time series; �b� the autocorrelation functions; and �c� the fre-
quency spectrum of the plant population. The plant population has
the same spectrum. The black curves represent prey and the green
�light gray� represent the plant populations. Simulation has taken
106 Monte Carlo time steps. We are using one time step of the
simulation as a unit of time.
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to the imposed periodic boundary conditions. The behavior
of the times series in Fig. 2 corroborates with our observa-
tions of the distribution of the individuals in Fig. 3. The
population time series has a huge oscillatory amplitude that
is verified on spatial distribution. Small population clumps
emerge and diffuse on the region like a wave, leaving some
individuals behind on the path. With the wave collision,
many individuals die due to the carrying capacity of the cells
and to the local lack of food. We can suppose that the low
value of the regeneration rate is responsible for this kind of
behavior. Plants expend some time to recover their popula-
tion level. During this period there are not many sites that are
able to sustain the prey and their offspring. The probability
of new waves appearing is linked to regeneration rate of
plant: as this rate increases more waves propagate in differ-
ent places of the distribution. Oscillatory behavior is verified
until the regeneration rate reaches values around 0.034 for
the set of parameter C1.

For the regeneration rate in the interval from 0.03 up to
0.04, see Fig. 4, a change in the behavior of the time series
happens. Figure 4 shows a few plant time series for a regen-
eration rate equal to 0.033. A plant’s population changes its
oscillatory regime from a high amplitude to a low amplitude
in an unpredictable way. The oscillatory behavior with low
amplitude seems to be more stable than the other one and the
prey populations do not go to extinction in any future time
when they have this behavior.

Figure 5�a� shows one of these time series that presents
one characteristic frequency and one harmonic associated to
its high amplitude region, shown in Fig. 5�b�. The low am-
plitude region of the time series presents only one frequency,
as can be seen in Fig. 5�c� and it is different from the fre-
quency found in Fig. 5�b�. Population waves still appear after
the transition time, in the region with the low amplitude and
it is shown in Fig. 6. In this situation, the prey population is

much less localized on the space and the waves are not as big
as in the previous ones but both oscillate in a synchronous
way.

In order to identify some features of the phenomena
shown in Fig. 4, we ran 3500 simulations using the same
parameter values. We measured the size of each low ampli-
tude oscillation region larger than 1000 time steps. The re-
sults, shown in Fig. 7, obey an exponential function. The
system oscillates between two states, one with high ampli-
tude and other with low amplitude oscillation in an unpre-
dictable way. This behavior can be associated to the self-
regulation of the system and also can be found in other

a) t = 0 b) t = 650 c) t = 700

d) t = 750 e) t = 800 f) t = 1050

g) t = 1100 h) t = 1150 i) t = 1200

FIG. 3. �Color online� Spatial distribution of simulations adopt-
ing a regeneration rate 0.02 and the parameters set C1 �see Table I�.
Each figure corresponds to a different time step of the same simu-
lation. The main feature is the appearance of a big prey wave
throughout the lattice. In the figure, the plant is represented in a
green �light gray� scale and prey in black.
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FIG. 4. Results of four simulations with the parameters set C1 in
Table I, under the same initial conditions, and with the regeneration
rate equal to 0.033. The behavior of the time series are distinct in
each one of the simulations.
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FIG. 5. �Color online� Frequency analysis of two distinct parts
of the time series of populations obtained with the set C1 and the
regeneration rate equal to 0.033. �a� The time series with two dis-
tinct regions. The first part corresponds to a region with high am-
plitude and the second corresponds to a region with low amplitude.
�b� The presence of one characteristic frequency and two harmonics
associated to a region with high amplitude in �a�. �c� presents only
one frequency related to a region with a low amplitude in part �a�.
These frequencies are different in two regions. Plants are green
�light gray� curves and prey are black curves.
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different parameter sets, as we can see in Fig. 8, where we
use the set C2.

In this interval of the regeneration rate, the time series of
the system show a behavior that alternates between the solu-
tions found with the regeneration rate under 0.03, which has
high amplitude oscillations, and the solution found with a
regeneration rate above 0.04 that presents low amplitude os-
cillations and a more stable state. Figure 9 shows the same
simulation adopting a regeneration rate of 0.05. For higher
values to the regeneration rate the system begins to oscillate
in a low amplitude regime and become more stable. The
frequency associated to the time series for both populations
slowly vanishes when we increase this parameter.

Figure 10 shows a phase space portrait corresponding to
the simulations shown in Figs. 5 and 8. We removed the

transient points of the simulations and displayed the station-
ary values only. In Fig. 10�a�, the system initially oscillates
through a closed orbit around the equilibrium point, charac-
terizing a high amplitude oscillation regime to the corre-
sponding time series. Due to the stochasticity of the system,
it is not possible to define clearly the orbit, however, it is
possible to identify the region where it happens. The system
jumps suddenly to an equilibrium point characterizing a
nonoscillatory behavior for long time intervals or a low am-
plitude oscillation regime. In Fig. 10�b�, a simulation is
shown that initially oscillates along a large orbit and jumps
to a point indicated in the left rectangle in the figure. Subse-
quently it returns to the larger orbit and goes to extinction
after some time steps later, as indicated on the right rectangle

a) t = 7500 b) t = 7550 c) t = 7600

d) t = 7650 e) t = 7700 f) t = 7750

FIG. 6. �Color online� Spatial distribution of simulation for a
regeneration rate equal to 0.033 with the parameter set C1. Each
figure corresponds to a different time step of the same simulation.
The figure represents one time interval to which the system oscil-
lates with a low amplitude. It can be seen that population waves are
smaller than the case with high amplitude oscillations. Besides this
the individuals are more spread in the region. The plant population
is represented in green �light gray� scale and prey in black.

FIG. 7. �Color online� Distribution of the sizes of the intervals
of each low amplitude oscillation for regions larger than 1000 time
steps. The fitted exponential curve, from the data, is y
=1596e−0.005 62x.
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FIG. 8. �Color online� Simulations with different parameter sets
show the same transition effect. Graphs �b� and �c� show a “zoom”
in different parts of the graph �a�. After the time 125 000, the prey
population goes to extinction. Results obtained with the parameter
set C2 in Table I and the regeneration rate is 0.025. Plants are
represented in green �light gray� and prey in black.
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FIG. 9. �Color online� Results obtained with parameter set C1
and a regeneration rate equal to 0.05. It shows a more stable behav-
ior. Graph �a� shows the time series of prey �green �light gray�
curve� and plant �black curve�, �b� the autocorrelation function, and
�c� the Fourier transform. As we can see at the Fourier transform,
oscillations of the time series do not show any relevant frequency.
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in the same figure. This indicates that the system has mul-
tiple steady states and the stochasticity is responsible for the
transitions among them. As we said before, populations have
a higher probability to go to extinction when they have this
high oscillatory behavior because they assume small values
and the stochasticity is very relevant in this situation.

B. Coexistence of the three species

As we increase the regeneration rate, the wave behavior
starts to disappear and prey spread along the lattice in a
uniform way. After the prey population reaches a more stable
behavior, predators are able to survive because there is more
available food and then the coexistence of the three species is
possible.

In some simulations, we observe that the number of
predators is directly related to the regeneration rate of the
plant. As we increase the regeneration rate of the plant we
dislocate the equilibrium point of the system in a positive
way. Figure 11 shows three simulations using parameter set
C3 in Table I and choosing different values for the regenera-
tion rate. These parameter sets were chosen in order to guar-
antee that predators would survive, although the regeneration
rate was low. Increasing the regeneration rate also makes the
population reduce the oscillation around the equilibrium
point leading the system to a more stable state.

We have distinct spatial distribution in the case of coex-
istence between the three species. These distributions are de-
pendent on the abundance of each population. The constants
that affect directly those quantities are the regeneration rate,
the prey birth rate, the predator birth rate, and the hunter rate.
The last one is important because according to the cellular
automata rule only predators which ate on the current itera-
tion could reproduce.

Situations with a high prey birth rate and a high regenera-
tion rate result in a uniform spatial distribution, as we show
in Fig. 12. Preys are constantly reproducing, occupying the
whole region. The predators and the prey are distributed uni-
formly. Time series obtained with this distribution is shown
in Fig. 13. From this figure we can notice that the plant
population has a lower level due to the high number of prey
gathering it. The populations have a very stable behavior
with no relevant oscillations. The Fourier transform in the
graph d indicates the presence of a few frequencies with very
low weight compared to ones we obtained previously. We
consider this behavior closest logistic equation behavior,
since it reaches a steady state point and it does not have any
relevant oscillation or a characteristic frequency.

This result can be understood as a trend opposite to the
paradox of the enrichment of prey �17�. Simple models of
predator-prey dynamics predict that enrichment reduces sta-
bility by increasing prey carrying capacity or population
growth rate and causes population circles that increase in
amplitude �18�. The increase of the regeneration rate in our
model can be seen as the increase of the carrying capacity to
the prey because there will be more resources available for
them and consequently the prey population growth rate will
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FIG. 11. �Color online� Phase space portrait of the prey and the
predator populations of three simulations with parameter set C3 in
Table I and using different values of regeneration rates.

FIG. 12. �Color online� Spatial configurations correspondent to
the case shown in Fig. 13. Predators are yellow �light gray� and
prey are red �dark gray� points. Black points represent predator and
prey in the same site.
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be higher. The results presented here corroborate with theo-
ries and experiments where the enrichment can stabilize the
predator dynamics �19,20�. This behavior can be associated
to the specific dynamics that govern the system and can be
related to the local spatial characteristic of our model.

However, if we decrease the prey’s availability by reduc-
ing their birth rate and increasing predators by adding preda-
tors birth rate and the hunter rate, we obtain a different dis-
tribution. The prey are distributed in clumps with the
predators around them as we can see in Fig. 14. The prey are
now rare and the predators need to stay near these clumps to
reproduce and survive. Our observations of clumping agree
with Kareiva’s �21� considerations. He states that one un-
avoidable outcome of local interactions and local dispersion,
when we are working with cellular automata, is the clump-
ing. The characteristics of the clumps are strongly related to
the parameter set of the model such as birth and mortality

rates. In these cases, as we can see in Fig. 15, the plant reach
higher values due to the small number of the prey and the
predators have higher values due to a favorable parameter set
in the simulation. All the populations time series have oscil-
lations and the Fourier transform indicates the presence of
one characteristic frequency that is equal to both.

IV. CONCLUSIONS

We develop a spatial model of a predator-prey system
considering a three trophic food chain and use the individual
based model �IBM�, with cellular automata rules. We focus,
basically, on the relationships between spatial configurations
and the time series behavior.

All simulations were run with initial random spatial dis-
tributions. According to the set of parameters assigned to the
simulation, different kinds of spatial patterns spontaneously
emerged. In all situations under consideration here, no inho-
mogeneous spatial conditions were applied, so we can at-
tribute all of these different spatial configurations as a result
of the cellular automata rules that characterize the dynamics
of the system. In this sense the system presents a self-
organization due to these dynamics rules.

The results allow us to conclude that the regeneration rate
of the plant is the critical parameter of the system. It is
strongly related to the stability of the steady point of the
system as well as the behavior of the system at this point.

Adopting low values of regeneration rate and using a set
of parameters that allows the coexistence between prey and
plant, it is possible to observe the occurrence of traveling
waves on spatial distributions. Time series related to these
distributions oscillate with a high amplitude and present a
characteristic frequency associated to them. Increasing the
value of this parameter we observe a different kind of trav-
eling waves and distinct time series behavior, which now
have a low amplitude region in their oscillations and differ-
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FIG. 13. �Color online� Results of simulation using parameter
set C4 values in Table I and regeneration rate equal to 0.2. �a� The
time series for three populations. Plants are green �light gray�,
predators are orange �gray�, and prey are black curves. �c� A zoom
on the time series for the predators and the prey, emphasizing the
oscillatory behavior of both. �d� The frequency spectrum of the
autocorrelation functions �b�.

FIG. 14. �Color online� Spatial configurations corresponding to
a case using parameter set C3 values in Table I and regeneration
rate equal to 0.03. Plants are green �light gray�, predators are black,
prey are red �gray�, and predator and prey are blue point. As we can
see, the prey are distributed in clumps with predators localized
around them.
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FIG. 15. �Color online� Results of simulation using parameter
set C3 values in Table I and the regeneration rate equal to 0.03. �a�
The time series for three populations. Plants populations are green
�light gray�, predators are orange �gray�, and prey are black curves.
�c� A zoom of the time series for the predators and the prey, em-
phasizing the oscillatory behavior of both. �d� The frequency spec-
trum to the autocorrelation functions of �b�.
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ent characteristic corresponding frequencies. In this situation
the system has two possible states and alternates between
them according to the value of this parameter. Jansen �22�
has shown that spatial interactions can produce this kind of
behavior and can stabilize the predator-prey system. Our re-
sults corroborate with his affirmative and show that the sys-
tem has a critical parameter. The alternation is nondetermin-
istic and the size distribution of intervals to these two states
obeys an exponential function.

Another spatial configuration that we observed was a uni-
form distribution. This kind of configuration appears when
resources are abundant and prey grow up until reaching the
carrying capacity of the region and can be understood as a
prey enrichment. This result is in accordance with others
experimental and theoretical results �19,20� which assure
that the enrichment of the prey stabilize the more complex
predator-prey systems. This configuration is more stable than
the traveling waves and within this configuration the system
is capable of maintaining the three species. Situations with a
high number of prey present uniform spatial distributions.
However, this configuration disappears when the predators
are smarter and the number of prey is lower and in its place
appear a population clump configuration. In terms of time

series, this distribution has a similar frequency spectrum.
The appearance of different patterns in the spatial distri-

butions is a consequence of the dynamics of the system and
is closely related to the parameter values used to describe the
relations between the individuals as well as the stochastic
characteristic of the process. The presence of a characteristic
frequency in the corresponding time series is a signalization
of the pattern type formed in the spatial distribution. In order
to create a more precise connection between spatial pattern
and the corresponding time series we are working now on a
spatiotemporal statistical analysis of the presented data.
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